首页> 外文OA文献 >Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls
【2h】

Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls

机译:存在非线性流固耦合的弱解   模拟气缸中不可压缩的粘性流体的流动的问题   有可变形的墙壁

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study a nonlinear, unsteady, moving boundary, fluid-structure interaction(FSI) problem arising in modeling blood flow through elastic and viscoelasticarteries. The fluid flow, which is driven by the time-dependent pressure data,is governed by 2D incompressible Navier-Stokes equations, while theelastodynamics of the cylindrical wall is modeled by the 1D cylindrical Koitershell model. Two cases are considered: the linearly viscoelastic and thelinearly elastic Koiter shell. The fluid and structure are fully coupled (2-waycoupling) via the kinematic and dynamic lateral boundary conditions describingcontinuity of velocity (the no-slip condition), and balance of contact forcesat the fluid-structure interface. We prove existence of weak solutions to thetwo FSI problems (the viscoelastic and the elastic case) as long as thecylinder radius is greater than zero. The proof is based on a novel semi-discrete, operator splitting numericalscheme, known as the kinematically coupled scheme, introduced in \cite{GioSun}to solve the underlying FSI problems. The backbone of the kinematically coupledscheme is the well-known Marchuk-Yanenko scheme, also known as the Liesplitting scheme. We effectively prove convergence of that numerical scheme toa solution of the corresponding FSI problem.
机译:我们研究了在通过弹性和粘弹性动脉的血流建模中出现的非线性,不稳定,运动边界,流体-结构相互作用(FSI)问题。由随时间变化的压力数据驱动的流体流动由2D不可压缩的Navier-Stokes方程控制,而圆柱壁的弹性动力学则由1D圆柱Koitershell模型建模。考虑了两种情况:线性粘弹性和线性弹性的科特壳。流体和结构通过运动学和动态的侧向边界条件(描述了速度的连续性)(无滑移条件)以及在流体-结构界面处的接触力的平衡而完全耦合(2路耦合)。只要圆柱半径大于零,我们证明存在对两个FSI问题(粘弹性和弹性情况)的弱解。该证明基于\ cite {GioSun}中引入的一种新颖的半离散,算子拆分数值方案,称为运动学耦合方案,用于解决基本的FSI问题。运动耦合方案的主干是众所周知的Marchuk-Yanenko方案,也称为Liesplitting方案。我们有效地证明了该数值方案对相应FSI问题的解决方案的收敛性。

著录项

  • 作者

    Muha, Boris; Canic, Suncica;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号